Nippon Denko Compendium

Nippondenko daijiten

April 2025

Contents

Company Overview		Functional Mat
Company overview	3	Functional materials
Businesses and products	4	Zirconium oxide
History of Nippon Denko	5	Boron oxide
Ferroallovs		Metal hydride alloy
What are ferroallovs?		Ferroboron
Ferroallovs, an essential material for steel	7	Manganese inorgani
How are ferroalloys made?	8	Cathode materials for
Global crude steel production by country and ferroalloy production by product	9	Incineration As
Ferroalloy production in Japan: Ferromanganese is produced domestically	10	Aqua Solutions
Manganese ore: Ferroalloy's raw material, global production and trading volume	11	Aqua Solutions busi
Ferroalloy market prices and manganese ore prices	12	Electric Power
Business strategy of Nippon Denko		Electric Power busin
Ferroalloys business of Nippon Denko	13	
Low-carbon ferromanganese (SLP)	14	
Resource strategy and optimal location are the ways to win out over rivals	15	
Kudumane manganese mining area	16	

I Materials	
aterials products list	18
de	19
	20
alloy	21
	22
organic chemical products	23
erials for lithium-ion batteries	24
on Ash Recycling	

sh Recycling business	26
tions	
s business	28
wer	
business	30

Company Overview

Company overview

Established	October 1925					
Head Office	1-4-16, Yaesu, Chuo-ku, Tokyo					
Employees (as of Dec. 31, 2023)	Consolidated : 950 Non-consolidated: 783					
Businesses	Ferroalloys / Functional Mate Incineration Ash Recycling / A Electric Power	rials / qua Solutions /				
Group Affiliates	5 domestic 2 overseas affiliates					
	EV2024					
(consolidated)	Net sales	78,235				
	Total assets	102,200				
	Shareholders' equity	11,108				
	Equity ratio	72.1%				
Stock (as of Dec. 31, 2024)	Total number of issued shares	137,295,472				
(as of Dec. 31, 2024)		107,200,172				

Company Overview © 2025 Nippon Denko Co., Ltd

- Management Philosophy -

ping create an affluent future through sustainable th by developing and providing distinctive products, technologies, and services.

- Our Ideal State in 2030 -

ompany on a constant quest for a better future by supporting people's lives through materials and the environment.

Our Group aims to be a company on a constant quest for a better future by supporting people's lives through "Materials" and "Environment"

Incinera	tion Ash Recycling		Aqua Sol	Facility: Koriyam					
 Contributing resources from 	to a recycling-oriented society by om incineration ash		Contribute to the realization of circular economy and neutral society through our wastewater purification a water production technology and services						
 To increase th incineration as To extract me To recycle inci 	e capacity of landfill sites by collecting and sh tals containing valuable metals from incine meration ash as engineering and construct	ration ash ion materials	I	·					
Main Services & Products	Collection and treatment of incineration ash Metals containing valuable metals ECOLAROCK (engineering and construction materials)		I	Main Products	Wastewater treatment equipment Pure water production system				
Main Applications	Precious and nonferrous metals for industrial purposes Construction materials such as roadbed materials	Metals containing valuable metals		Main Applications	Treatment of industrial wastewater Production of pure water for hydrogen stations, etc. Pure water production	Pure water pro			

Facility: Toyama Plant (Imizu and Takaoka areas) Myoko Plant / Tokushima Plant

Providing materials for advanced components supporting a decarbonization and digitalization

Distinctive material lineup, such as "No.1" and domestically produced "One-of-a-kind" products in

Zirconium oxide / Boron oxide / Ferroboron / Metal hydride alloys / Cathode materials for lithium-ion batteries/ Manganese inorganic chemical products

Ceramic capacitors / Glass substrates for displays / Neodymium magnets / Anode materials for HVs' nickel-hydride batteries / Cathode materials for EVs' lithium-ion batteries / Additives for electronic components

Zirconium oxide

a Plant

carbonand pure

duction

Electric Power

Facility: Hidaka Office

- Stable sale of electricity by utilizing renewable energy Feed-In Tariff system (FIT)
- Stable supply of green electricity through the largest private-sector owned dams
- Introducing the environmental advantages of green electricity

Horomangawa Hydroelectric power nlants

History of Nippon Denko

Ferroalloys Functional Materials Incine

1925	Established Ogaki Denki Yakin Kogyosho Co., Ltd. (later Nippon Denki Yakin Co., Ltd.) and started production and sale of various ferroalloys.
1963	• Nippon Denko Co., Ltd. is formed through the merger of Nippon Denki Yakin Co., Ltd. and Toho Denka Co., Ltd.
1969	Tokushima Plant built, started operation. (equipped with pier facilities and large electric furnace)
1970	Started production at the Kashima Plant.
1976	Started production of manganese inorganic chemical products at the Taguchi Plant. (currently the Myoko Plant)
1984	Started production and sale of ferroboron by using electric furnace.
1989	Started production and sale of zirconium oxide.
1992	Started production of metal hydride alloys at Taguchi Plant. (currently the Myoko Plant)
1996	Started sale of AQUA PACK, cartridge-type demineralizer.
1999	Started sale of MR PACK, pure water production equipment.
2000	 Completed expansion of ferroboron production facility. Completed zirconium oxide new production plant. Completed construction of boron recovery facility.
2002	 Started nickel recovery and recycling business. Completed construction of dedicated waste melting furnace (EM1) at Kashima Plant. / Started operation of industrial waste recycling.
2003	Acquired a business of lithium manganese battery materials.
2004	 Started fluorine and phosphorus recovery and recycling businesses / Started delivery of pure water production equipment for fuel cell. Completed construction of waste melting furnace (EM2) at Kashima Plant.
2005	Installed an in-house power generator utilizing the electric furnace gas at Tokushima Plant.
2010	Completed the first stage of large-scale plant for automotive battery materials.
2011	Completed the second stage of large-scale plant for automotive battery materials.
2012	Capital investment in Pertama Ferroalloys Sdn. Bhd.
2013	 Acquired manganese mining interests in South Africa. Obtained approval for soil decontamination at Kashima Plant.
2014	Received facility certification for renewable energy Feed-In Tariff (FIT) program under the Japanese government.
2018	 Completed construction of waste melting furnace (EM3) at Kashima Plant. Started Sumitomo Metal Mining's contract manufacturing of cathode materials for lithium-ion at Toyama Plant.
2019	Started the operation at Horomangawa Hydroelectric No. 3 Power Plant.
2022	Started the operation of self-consumption solar power generation system at the Koriyama Plant.
2024	 Completed an absorption-type merger of Chuo Denki Kogyo Co., Ltd.

eration Ash Recycling		Aqua Solutions		Electric Power	
upon merger with Chuo Denki Ko	ogyo	Co., Ltd. (English name	uncha	anged)	
urnace at the Kashima Plant.					

Ferroalloys

Ferroalloys, an essential material for steel

Ferroalloys are of vital importance in making steel, as they are a necessary "seasoning" found in every piece of steel.

Major ferroalloy products and applications

Ferromanganese (Nippon Denko's main product) Ferrosilicomanganese	Make steel stronger Nippon Denko's main product: Ferromanganese
Ferrovanadium	Oil well casings, line pipes, springs
Ferrochrome	Stainless steel products
Ferrosilicon	Deoxidizing

Ferroalloys © 2025 Nippon Denko Co., Ltd

▼ Ferroalloys

Completion as steel

How are ferroalloys made?

Our main product, High-carbon ferromanganese

Ferroalloys © 2025 Nippon Denko Co., Ltd

High-carbon ferromanganese is a ferromanganese product with a relatively high carbon content.

No. 1 share in Japan

Global crude steel production by country and ferroalloy production by product

Global crude steel production

Ferroalloys © 2025 Nippon Denko Co., Ltd

Global ferroalloy production

9

Ferroalloy production in Japan: Ferromanganese is produced domestically

Ferroalloys © 2025 Nippon Denko Co., Ltd

Manganese ore: Ferroalloy's raw material, global production and trading volume

Global production of manganese ore

2023: 60.42 millions tons

Mostly high or medium-grade ore

Less likely to produce slag and have higher metal recovery rates than lowgrade ores.

Ore from China is mostly low-grade

Processing low-grade ore results in a large amount of slag, for a low metal recovery rate.

Ferroalloys © 2025 Nippon Denko Co., Ltd

Product price (quarterly average)

High-carbon ferromanganese (FMnH) & Manganese ore prices transition data

	20			21			22			23				24						
	Q1	Q2	Q3	Q4																
FMnH (Eur)	1,023	1,060	1,014	1,077	1,315	1,607	1,815	2,109	1,894	1,940	1,260	1,225	1,264	1,153	1,009	1,026	1,153	1,348	1,341	1,068
FMnH (US)	1,102	1,177	1,072	1,232	1,572	1,728	2,234	2,540	2,625	2,909	2,485	1,524	1,438	1,425	1,292	1,179	1,217	1,423	1,567	1,369
Mn ore	4.4	5.7	4.3	4.2	5.2	4.9	5.2	5.6	6.3	7.6	5.8	4.6	5.6	4.8	4.4	4.2	4.3	6.7	7.1	4.1

Ferroalloys © 2025 Nippon Denko Co., Ltd

Product prices and ore prices

FMnH (\$/t) / Mn Ore (\$/Mn%)

Ferroalloys Market: Fastmarkets (EU) METALSWEEK (US) / Manganese Ore Market: Fastmarkets

Ferroalloys business of Nippon Denko

Ferroalloys business sales trend ratio by product

Ferroalloys © 2025 Nippon Denko Co., Ltd

High-carbon ferromanganese is our main product. It is produced domestically, taking advantage of the competitiveness of the Tokushima Plant.

Low-carbon ferromanganese (SLP) has a very high manganese content with few impurities. It is used as an additive in the final stage of steelmaking, in place of manganese metal.

(please refer to page 14 for details)

Manganese metal: A metal with a manganese purity of nearly 100%. It is used as an additive in making steel, stainless steel, and aluminum.

SLP ferromanganese

What is low-carbon ferromanganese (SLP)? (SLP: Super-Low Phosphorus)

▲Low-carbon ferromanganese (SLP)

- Very low-carbon ferromanganese with manganese purity of 90% and low phosphorus content.
- As a raw material essential for high-grade steel production, it is used in place of manganese metal.

Manganese metal

- Annual demand for manganese metal in Japan is about 50,000 tons, all of which is imported, some 90% of it from China.
- Because of the very high dependence on China, producing it in areas other than China or possibly switching to an alternative are options being considered.

Chinese production and exports of manganese metal

 Producing high-purity ferromanganese from the by-product of High-carbon ferromanganese using proprietary technology
 Further demand is expected due to the high-grade steel production increase

Added one electric furnace in 2008. Annual production capacity had raised from 18,000 tons to 30,000 tons.
 Expanded annual production capacity from 30,000 tons to

- 40,000 tons in 2010.
- Contributing a stable procurement to customers and increase profitability.

Resource strategy and optimal location are the ways to win out over rivals

Optimal production location in accordance with the product type

Pertama Ferroalloys Plant (Malaysia)

(High-carbon ferromanganese)

Resource strategy

Obtaining stable supply of the ores needed for ferroalloy production

• Acquired manganese mining interests.

Investment in Kudumane Japan GK which invests to Kudumane Manganese Resources (25% ownership ratio)

Diversification of ore procurement sources

Overseas location : Pertama Ferroalloys Sdn. Bhd (25% ownership ratio)

Ferrosilicomanganese, Ferrosilicon

- Securing competitive green electricity from Southeast Asia's largest hydroelectric power plant (Bakun Dam, 2,400 MW)
- Produces ferroalloys that consume large amounts of electricity
- Annual production capacity: 220,000 tones

Kudumane manganese mining area

Ferroalloys © 2025 Nippon Denko Co., Ltd

Functional Materials

Functional materials products list

Functional materials products	Usage				
	For electronic ceramics	Raw material of PZ capacitors, etc.			
	For glass	Used as additives i			
Zirconium oxide	For functional films	Raw material of op etc.			
	Composite oxide for catalysts	Catalytic promote			
	For glass	Used as additives			
Boron oxide	For other applications	Raw material of bo agents, etc.			
Metal hydride alloys	Anode materials for nickel-hydrogen batteries				
	For steels	Used as additives i			
Ferroboron	For magnets	Raw material of ne			
	For amorphous alloys	Raw material of ar			
Manganese inorganic chemical products	Please refer to page 23 for details.				
Cathode materials for lithium-ion batteries	Cathode materials for lithium-ion batteries (m				

ZT piezoelectric actuators, laminated ceramic

in high-refractive optical glass lenses, etc.

ptical adjustment coating, hard coating materials,

for purifying automobile exhaust gas

in liquid crystal glass, optical glass, glass fiber, etc.

oron compounds, disinfectants, surface treatment

(mainly for HEV)

in steel as one kind of ferroalloy

eodymium iron boron (NdFeB) magnet alloy

morphous alloy (FeSiB)

nainly for EV)

What is zirconium oxide?

- Electronic ceramics made from zirconium oxide have the electrical properties for storing electricity and converting between electricity and pressure.
- A high refractive index is achieved by using zirconium oxide as an additive in optical glass and functional film.

Nippon Denko and zirconium oxide

- Started production at the Tokushima Plant in 1989
- Won acclaim for ultrafine particles and high purity
- Sold mainly for use in electronic parts and optical lenses

Main applications and products

Electronic ceramics

- Laminated ceramic capacitors and ceramic filters used in the electrical circuits of digital home appliances, PCs, cell phones, and other digital devices
- Inkjet control devices in inkjet printers
- Image stabilization in digital cameras and other devices, and in gyro sensors for tilt detection in smartphones

Ceramic capacitors

Inkjet printer

Glass / Film

Optical lenses for digital cameras, films for liquid crystal displays (LCDs), etc.

Boron oxide

What is boron oxide?

• Boron oxide is calcined and anhydrous boric acid.

Nippon Denko and boron oxide

- The only manufacturer in Japan
- Started production at the Tokushima Plant in 1986. (the first in Japan)
- In 2022, it also began production for external sales at the Toyama Plant.
- Nippon Denko supplies high-quality, high-purity products that contain minimal impurities.
- Other than glass, expanding business for electronic pats materials, etc.

Main applications

Glass panels	Glass panels for monitors, TVs, etc.
Glass fiber	Electronic parts substrates for high-speed data transmission

Metal hydride alloys

Metal hydride alloys

- Started commercial production in 1992
- Adapted by Toyota HEVs / The largest metal hydride alloys supplier of HEV's batteries in Japan
- ISO 9001 and ISO 14001 certified plant

Metal hydride alloys plant (Myoko, Niigata Prefecture)

Main applications

Anode material for nickel-hydrogen batteries used as drive batteries in HEV.

Features of metal hydride alloys

- Long life span equivalent to vehicle life
- acceleration

• Ample output to ensure startability at low temperatures and power

Principles of nickel-hydrogen batteries

Ferroboron

Nippon Denko is the only ferroboron manufacturer in Japan.

Products	Description	Usage or applications
For steel	Adding a very small amount (10 to 100 ppm) of boron to steel improves its hardenability and high-temperature strength.	Applications Wires used in suspension brid claws of power shovels.
For magnets	A neodymium iron boron (NdFeB) magnet is the strongest kind of permanent magnet. These magnets are essential to making electronic devices smaller and lighter, higher efficiency and energy-savings.	 Applications of NdFeB r Motors of HEV and EV. Head actuator mechanism Motors in energy-efficient a Electrical generator in wind
For amorphous alloys	Amorphous (noncrystalline) alloy ribbons with thickness of just a few tens of microns are produced by extremely rapid cooling of the alloys composed of Fe, Si, B, etc. from molten state, at a rate of around a million degrees celsius per second.	Used mainly as the ste When amorphous alloys are u transformers, electrical (no-lo improved energy efficiency.

dges, bolts and nuts,

magnets

- for hard disk drive reading and writing.
- appliances (air conditioners, etc.)
- d power system.

used as steel core material in bad) loss at the steel core is very small for

Manganese inorganic chemical products

Manganese inorganic chemical products

- Started commercial production in 1976
- The only Japanese domestic manufacturer of diverse manganese inorganic chemical products
- ISO 9001 and ISO 14001 certified plants
- Kosher and FDA certified plant (manganese sulfate)

Manganese inorganic chemical products manufacturing plant (Myoko, Niigata Prefecture)

Usage of manganese inorganic chemical products

Products

Manganese sulfate

High-purity manganese

Manganese carbonate

High-purity manganese carbonate

Chemical manganese d

Reduced ore

Features of manganese inorganic chemical products

- Holder of technology for high-purity refining of manganese ore
- Thorough removal of alkaline metals and alkaline earth metals by crystallization and recrystallization processes
- Thorough removal of iron by use of oxidizing agent and optimization of reaction pH

Functional Materials © 2025 Nippon Denko Co., Ltd

	Usage
	Animal feed additives, catalyst raw materials, supplements, fertilizers
e sulfate	Cathode materials for lithium-ion batteries
	Animal feed additives, surface treatment agent raw materials, soft ferrite
e	Additive in laminated ceramic capacitors, thermistors
dioxide	Ozone decomposition catalysts, deodorizing catalysts, oxidizing agents for organic synthesis
	Flux

Manganese carbonates

Cathode materials for lithium-ion batteries

Cathode materials for lithium-ion batteries

- Started commercial production in 1997
- The pioneer of cathode materials for large lithium-ion batteries
- ISO 9001 and ISO 14001 certified plant
- The contract manufacturing from Sumitomo Metal Mining

Battery materials manufacturing plant (Takaoka, Toyama Prefecture)

Main applications

Cathode materials for lithium-ion batteries uses as drive batteries in EV and HEV etc.

Cathode materials for large lithium-ion batteries in smart house or energy storage system etc.

Principles of lithium-ion batteries

Incineration Ash Recycling

Incineration Ash Recycling

History of business

- Chuo Denki Kogyo became the first private company in Japan to begin treatment of incineration ash generated from municipalities by melting in a ferroalloy furnace in 1995
- Second dedicated furnace was put into operation in 2004
- Third dedicated furnace was put into operation in 2018
- Fourth dedicated furnace was put into operation in October 2022

Features

Incineration Ash Recycling © 2025 Nippon Denko Co., Ltd

• Melting and solidification at high temperature \rightarrow decomposition of dioxin, detoxification and stabilization of heavy metals

Slag (ECOLAROCK) produced by melting is safe and environmentally friendly product for use in civil engineering and construction materials (roadbed material, revetment construction, etc.)

• Valuable metals (gold, silver, copper, etc.) contained in metals produced by melting are recycled (recycling of urban mines)

Roadbed materi

Leveling material

Material for river embankment work

<Applications Example>

Roadbed material

- Leveling material for solar panel installation
- Embankment material for disaster recovery
- Base material for river embankment work

Aqua Solutions

Aqua Solutions

Has a large ion-exchange resin recycling plant in Koriyama, Fukushima prefecture. Rental, sale, and regeneration of water treatment equipment, ion-exchange resin towers with the consignment regeneration scheme.

Aqua Solutions © 2025 Nippon Denko Co., Ltd

NIPPON DENKO

Electric Power

Electric power business

Overview of electric power business

- Built a hydroelectric power plant at Horomangawa River in Hokkaido in early Showa period for the pioneer of the development of the power supply in Hidaka area
- Renewed the power generation facilities at the No. 2 and No. 3 power plants
- Shifted to the business of selling electricity through the Feed-In Tariff system (FIT)

Power generation facility	Output	Operation
No. 2 Power Plant	4,406kW	Started from Nov. 2017
No. 3 Power Plant	6,221kW	Started from Feb. 2019

Electric Power © 2025 Nippon Denko Co., Ltd

Horomangawa Hydroelectric **Power Plants**